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BY 

JONATHAN STAVI 
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ABSTRACT 

By a theorem of Gaifman and Hales no model of ZF + AC (Zermelo-Fraenkel 
set theory plus the axiom of choice) contains an infinite free complete Boolean 
algebra. We construct a model of ZF in which an infinite free c.B.a, exists. 

Notations 

ZF is the Zermelo-Fraenkel set theory and ZFA is the theory described in [4, 

4.1], which is like ZF except  for allowing a set A of atoms (urelements). The 

language of ZFA contains = ,  E and the constants 0 (for the empty set) and A 

(for the set of all atoms). ZF can be identified with ZFA + "A = 0". AC is the 

axiom of choice (not present in ZF). Models of set theories are denoted by 

M ,  J V, ~ ,  ~W, ... and their underlying sets by M, N, U, W, .... V is always the 

universal class. 

TC(x ) is the transitive closure of x ; rank (x) = sup {rank 

(y) + 1] y @ x}; ~ ( y )  is the power set of y. Following [4,4.1] we define ~ a ( x )  by 

induction on u :  

~" (X)  = X 

~+'(X) = ~"(X) U ~(~"(X)), 

~ " ( X ) =  U ~ ( X )  for limit a, 

~(X) = O ~ (X). 

It is a theorem of ZFA that V = 3~(A) .  Elements of ~ ( 0 )  are called pure 

sets. 
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The cardinality IX ] of a set X is assumed to have been somehow defined (in 

ZFA) so that IxI--[YI iff there is a 1-1 mapping from X onto Y (cf. [4, 11.2]) 

and that if X is well-orderable then IX I is the least (von-Neumann) ordinal 

which has a 1-1 mapping onto X. Thus the cardinality No of to = {0, I, 2, ...} is to. 

"B.a ."  abbreviates "Boolean algebra",  " c .B .a . " - - "comple t e  Boolean 

algebra". B.a.'s are denoted by ~ , ~  and their underlying sets by B , C  

respectively. 

Introduction 

By a free c.B.a, over a set D we mean a c.B.a. ~ together with a mapping 

f :  D --> B such that range (f) generates ~ as a c.B.a, and for every c.B.a. ~ and 

mapping g: D--> C there is a complete homomorphism h: ~--> ~ such that 

g = h o f .  

Gaifman and Hales showed that there is no free c.B.a, over D if I D I ~ N0 (in 

this form this is a theorem of ZF or even ZFA). The various known proofs of 

this theorem ([1], [3], [8], [10]) proceed by constructing very large countably 

generated c.B.a.'s. In all these proofs the set of generators is naturally indexed 

by pairs (or triples etc.) of natural numbers and to get an to-sequence of 

generators a pairing function on to is needed. This curious common feature of 

the proofs can be brought into focus by trying to replace to in them by an 

arbitrary infinite set 1"~. The reader is advised to try this for Solovay's  proof in 

[8] and convince himself (or read in [10, w that the following is established 

without the axiom of choice. 

THEOREM 0. I (ZF, ZFA). Let 12 be an infinite set. For each a there is a 

c.B.a. ~ generated by a subset o f  cardinality 112J'- such that [al_-<l B [. Hence, 

for every infinite cardinal ~c, there is no free c.B.a, over a set o f  cardinality >- K 2. 

Assuming AC, every infinite set D satisfies ] D I =  >N0(= N~) so there is no 

infinite free c.B.a. (a free c.B.a, over  a finite set being finite). 

In view of the apparent need for 11)] 2 in 0.1 the author conjectured ([10,5.5]) 

that the non-existence of an infinite free c.B.a, is not provable in ZF. This 

conjecture is verified in the present paper. We first show (Sec. 2-4) that in the 

basic Fraenkel model of ZFA ([4, 4.3]) there is a free c.B.A, over  the set A of 

atoms and then (Sec. 5) use the Jech-Sochor  first embedding theorem ([4, 6.1]) 

to get a model of ZF with a free c.B.a, over an infinite set. Transforming this 

model-construction to a finitary relative consistency proof in any of the usual 

ways gives 
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THEOREM. 0.2. If  ZF is consistent so is ZF + "there exists a free c.B.a, over 

some infinite set." 

We shall see in Section 5 that some additional statements can be added to ZF 

in 0.2 without destroying the consistency (e .g . - -" there  exists a non-principal 

ultrafilter over  to.") but none of them seems to us particularly interesting in this 

context.  In Section 7 some open problems and further results, as well as a 

by-product  of the work in Section 4, will be discussed. 

1. The propositional language 

It is useful to have a syntactical necessary and sufficient condition for the 

existence of a free c.B.a, over  any given set D. In the terminology of Gaifman 

[l] the condition is simply that there is a set of Boolean terms over  D which 

contains a representative for each equivalence class (this is equivalent to 

saying that the Boolean polynomials over D form a set). It will be necessary for 

us to formulate the condition a bit more explicitly. 

Given a set D, consider sentences built up from the propositional parameters 

p~ (i ~ D) b y - - ,  A, V (where A and V apply to sets of sentences of unlimited 

cardinality). Following [9, w these sentences will also be called Boolean terms 

(B.t.'s) over  D. The depth d(4)) of a B.t. 4) is defined by induction as follows: 

d(p~) = 0; 

d( - -  ~b) = d(~b) + i; 

d ( A X )  = d ( V X )  = sup{d(t~) + 11 q~ ~ X}. 

(We preserve the word " rank"  for the set-theoretical notion of rank.) 

I-4), where 4) is a B.t., means that 4) is provable in the basic formal system of 

[5, 5.11] equivalently (as is clear f rom [5,6.1-6.3]) that 114)1[= 1 in every 

Boolean-valued model ("valuat ion" in the terminology of [9, w l) in which 4) is 

defined. 4) - ~b means I-4) ~ ~b. Thus 4) =- ~ iff I[ 4) II = I1 II in every valuation in 

which 4} and tp are both defined. 

THEOREM 1.l. A necessary and sufficient condition for the existence of  a free 

c.B.a, over D is that there is an ordinal a such that every B.t. over D is 

equivalent (=--) to one o f  depth less than ~. 

The proof should be clear to any reader familiar with Ill or with equivalent 

constructions of free algebras f rom terms. 
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We shall also have occasion to use two-valued models. A two-valued model 

for the propositional language over  D is a function f :  D--~ {0, I}. The atomic 

sentence p~ (i E D) is considered true in f if [(i) = 1, false if f ( i )  = 0. Truth or 

falsehood of any sentence r in f are defined by induction on ~ as usual. We let 

2~ = {/If :  D ---> {0, I}} (the space of two-valued models). For a B.t. (sentence) 4~ 

over  D we let M o d ( 6 ) = { f E 2 " l O  is true in f} (the set of models of g,). 

Clearly if I-d' then Mod(cb) = 2 '7 and if g, = 0 then Mod(cb) = Mod(0) .  

THEOREM 1.2. If Ck is countably long (i.e.--the set of  subsentences o f  ck is 
countable) and Mod (r = 2 r) then l-ok. If  ck and tk are both countably long and 
Mod (~b) = Mod (tfl) then ch =- gJ. 

The first part is the "countable  completeness  theorem"  ([5,5.3.2]), which 

says that every logically valid countably long sentence is provable.  The second 

part of 1.2 is obtained by applying the first part to the sentence 4' ~ qJ. 

The definitions and theorems just outlined can all be formalized in ZFA using 

a natural identification of sentences with sets (e.g. p~ =(0 ,  i ) , - - d '  =(1,oh),  

A X = (2, X),  V X = (3, X)). Then the notions "Boolean term (over a given set)",  

" 'valuation (over a given set)," " the  value of a B.t. in a valuat ion,"  "the depth of 

a B.t." are A zFA (cf. [7]) hence absolute between transitive E -mode l s  of ZFA. 

This is clear f rom standard closure properties of A, predicates and operat ions 

but one must be careful here to define valuations ( = Boolean valued models) 

without requiring the B.a. of "truth values"  to be complete.  This is done in 

[9,w 

It follows that the s tatement  " l - d ' "  (hence a l so- -"d ,  =- qJ") is A~ ~A. Indeed 

]-6 iff there exists a derivation of ~ iff ]]4~ ]1 = 1 in all valuations in which r is 

defined. (Cf. Gregory [2, w for the same argument.)  Thus " ] - "  and "~-" are 

absolute between transitive E - m o d e l s  of ZFA. This absoluteness  will play a 

crucial role in the main argument  (Section 3). 

2. The model 

Our working set theory f rom now on i s - Z F A  + AC + "the set A of atoms is 

infinite countable ."  Every permutat ion zr of A induces as au tomorphism zr of 

the universe 'V = < V, E ,  0, A ) ( V = ~ ~(A )) as explained in [4, 4.2]. For each 

E C_A let f ix (E)  be the set of all permutat ions 7r of A satisfying ~-a = a for 

each a E E. E is said to be a support  for x (x E V) when ~-x = x for every 

7r ~ f ix(E) ,  x is said to be symmetr ic  when it has a finite support .  Let HS be the 

class of hereditarily symmetr ic  elements,  that is HS = {x] every  element  of 
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TC{x} is symmetric}. The basic Fraenkel model ([4,4.3]) is just 5e= 

(HS, E ,0, A )  and it satisfies each axiom of ZFA. 

We shall see that in 5e there is a free c.B.a, over  the infinite set A, but the 

proof will not be direct. Rather, it will go through a countable model of ZFA. 

By a standard model (for the language of ZFA) we mean in this section a 

model of the form g( = (X, E ,  0, A ) where X is a transitive class, 0 ~ X, A E X 

(hence A C_ X). Thus all standard models have the same set of atoms, ~V and b ~ 

are standard models. 

Let  9/ be a countable standard model of ZFA + AC which is elementarily 

equivalent to our universe 9/. Strictly speaking, we assume only that 9/ 

(satisfies finitely many axioms of ZFA + AC and) is elementarily equivalent to 

7/" for  finitely many formulas, namely- - those  needed for our considerations. 

The existence of 9/ is then well-knowla by the reflection principle. We denote 

by ~ the basic Frankel model associated with ~/, that i s - - W  = {x Ix E U and 

9/1= "x is hereditarily symmetric"}. Clearly ~ is a standard model of ZFA. 

Since 74/ is defined within 9/ in the same way that ,w is defined within ~V, 7,V is 

elementarily equivalent to 5e. 

It is easy to see that if E is a finite subset of A, x E V and E supports x then 

9/1= " E  supports x " .  It follows without difficulty that if x ~ U and x E HS  then 

x ~ W. The following lemma shows that W = U fq H S  and it will play a key 

role in Section 3. 

LEMMA 2.1. Every element of  W is hereditarily symmetric. 

We postpone proof of this to Section 4. 

MAIN THEOREM 2.2. In off. there is a free c.B.a, over A. 

The proof is given in Section 3. Since '~; is elementarily equivalent to b ~ the 

same statement holds in ST, but our proof will use the countability of off.. 

3. Proot of the main theorem 

THEOREM 3.1. In '~ff, every B.t. over A is equivalent to one of  depth <-4. 

This implies the main theorem (2.2) by 1.1. This section is devoted to the 

proof of 3.1. All statements, except  when modified by "in 7s or a similar 

phrase, are about the real universe ~t'. Recall from Section 1 that the notions 

"B.t ." ,  "I-" ,  "-~" and "dep th"  are absolute between 6/1 and ~V. 

DEFINITION 3.2. Let E C_ A ; f, g E 2 A. f - ~g when there is a permutation 

~r E f i x ( E )  such that g = 7rf. 
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LEMMA 3.3. For each' E C_ A,  ~ E is an equivalence relation on 2 A. I f  ~b is a 

sentence (B.t.) over A supported by E then Mod ~b is a union o f  equivalence 

classes of  ~ E. 

PROOF. The first part is obvious. For  the second we have to show that if 

f - Eg and f E Mod (~b) then g E Mod (~b). So let th be supported by E and f, 

g E 2  A, rr ~E f ix(E) ,  g = 7rf. Then rr~b = ~, hence 

f ~ Mod (~b) r ~rf E Mod (~th) r g E Mod th). 

Our plan is as follows: Consider a finite set E C_ A. Each equivalence class of 

- E  will be represented as Mod(X) for some explicitly written sentence X of 

depth =< 3. For  example, if E = {a,, a2}, a, # a2, a typical X might " say"  that pa, 

is true, P,2 is false and p, is true for infinitely many a E A - E  and false for  

exactly 7. It will follow from 3.3 that every sentence ~b supported by E is 

logically equivalent to a disjunction of such sentences )6 We shall verify that if 

~b ~ W this disjunction belongs to W and is Boolean-equivalent (-=) to ~b, 

proving 3.1. 

We now proceed with the details. Le t  E be a fixed finite subset of  A, ~ t has 

already been defined. The set Type of types over  E is defined thus: 

Type ={(e,~,v)le: E-->{O, 1},/z _-<to, v_<to 

and at least one of/z ,  v = to }. 

Let  f E 2 A. The type of f over E, denoted typE(f),  is defined as the triple 

(e, tz, v) where e = f i E  (the restriction of f to E) ,  

/z = ] { a C A - E I f ( a ) = l }  t, v = l { a C A - E l f ( a ) = 0 } ] .  

(1" ] is the cardinal of the set; for  subsets of A it is a natural number on to since 

A is countable.) It is clear that Type = { t y p E ( f ) l f E 2  A} and for f, g E 2  A, 

[ - Eg r type (f) = type (g). Thus the types over  E represent  the equivalence 

classes of - E. Let  

M, = {f E 2 A I typE (f) = r} (r  ~ Type) .  

Next  we associate with each r ~ Type a sentence (B.t.) X = ~,(E, z) over  A 

such that M o d ( x ) =  MT. X is defined by cases as follows: 

Case 1. r = ( e , n ,  to) where e: E--~{0,1}, n <to. Let  " F "  range over  the 

n-element  subsets of A - E .  
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Case 2. 

A - E  

g = V  A({p~ [a~E,e(a)=l or a E F }  
F 

u { - - p ~  la EE, e(a)=O or a E A  - E  - F } ) .  

a" = (e, to, n). Again let F range over the n-element subsets of 

Case 3. 

x = V  A({polaEE,  e (a )=l  or a E A - E - F }  
F 

O { - - p o l a ~ E , e ( a ) = O  or aEF}) .  

r = (e, to, to). The simplest choice for X = x(E,(e ,  to, to)) is 

[A({pola ~ E, e(a)= 1 } U { - - p o l a  ~ E,e(a)=O})] 

A - ,  V (x(E,(e,n, to))vx(E,(e,t~ 
n < w  

where x(E,(e,n, to)) and x(E,(e, to, n)) have been defined in cases 1-2. By 

writing it explicitly and applying de-Morgan's and other obvious rules one can 

bring this sentence to an equivalent form of depth _-< 3 (in cases 1-2 inspection 

shows that d(x) <- 3). 

It is clear from the definitions that M o d ( x ( E , r ) ) =  M, for r ETyp~.  Let 

XE = {x(E, r) r E TypE}. Since Type and XE have been obtained from A and E 

by absolute (A zFA) operations, it is clear that they are in W for each finite 

E C A .  
Now let th be any B.t. over A supported by E. By 3.3 Mod (~b) is a union of 

classes M , ( z E T y p E ) ,  hence there is a set TC_TypE such that M o d ( ~ ) =  

Mod(V,~Tx(E,~')). In fact we can take 

T = {z E Type [Mod (x(E, ~)) C Mod (~b)}. 

In case ~b is countably long, we have by 1.2, 

T = {z E Type I[-[x(E, z)--> 61} 

and for this T ~ - V,~TX(E, ~). (Note that the x(E, r) ' s  are countably long 

since A is countable). 

Now let th be a B.t. over A, th E W. Then ~b is supported by E, for some finite 

E C_ A. By the absoluteness of "i-" the set 

T = {r E Type[]-  [ ) (E,  T)---> ~l} 
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is in W (T C_ XE), hence the sentence + = V T~Tx(E, T) is in W. By the above 

4' --- ~O (in the real universe, hence in 7~') and qJ is a B.t. over A of depth _-4 

(since d(x(E,T))<= 3 for ~" E Typv.). This completes the proof of 3.1. 

4. Absoluteness of hereditary symmetry 

We wish to prove Lemma 2. I, which states that if x is hereditarily symmetric 

in the sense of ~ then x is hereditarily symmetric. The proof will give some 

more information, which may be of independent interest. In fact we shall show 

that the notion of hereditary symmetry is unchanged when only permutations 

moving just finitely many atoms are considered. This will immediately imply 

the absoluteness of the notion. 

Theorem 4.2 below has been known to people working on Fraenkel- 

Mostowski models but to the author's knowledge has never been announced. 

We continue to use the notations of Section 2. 

DEFINITIONS 4.1. For E C_A let f ix~(E)={Tr lTrEf ix(E)  and 

{a E A 17r(a)~ a}is finite}. E is aweak  support for x (x @ V) when 7rx = x for 

all 7r ~ fix~(E), x is weakly symmetric when x has a finite weak support, x is 

hereditarily weakly symmetric (x E H W S )  when every element of TC{x} is 

weakly symmetric. 
Note that all these notions are absolute between standard models of ZFA 

(syntactically they are AZVA). Thus to get the absoluteness of "hereditarily 

symmetric" it will suffice to prove in ZFA the following: 

THEOREM 4.2. X is hereditarily symmetric iff x is hereditarily weakly sym- 

metric (HS = HWS) .  

It is obvious that every support for x is a weak support for x, hence that 

every symmetric element is weakly symmetric and that HS C_ HWS. The rest 

of this section is devoted to the proof in ZFA that H W S  C_ HS. 

The idea is to assign to each x E H W S  a non-empty set Nx of "'names". Each 

name can be regarded as a term describing the E -structure of TC{x} in such a 

way that only the atoms from some finite weak support for x are mentioned 

(other atoms need not be mentioned because  they can be changed without 

changing x). It is formally simpler to let N~ consist not of terms in the ordinary 

syntactical sense but just pairs (p, q) consisting of a pure set p (p E ~ ( 0 ) )  and 

a sequence without repetitions q of atoms such that range (q) is a weak support 
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for X. There will be an absolute (A z~A) defined operation D that recovers  x from 

any of its names (x = D(t) for  t E Nx). Thus for  each x E HWS there will be 

p ,q  as above such that x = D(p,q) .  It will follow quite easily that each 

x E HWS is symmetric,  hence that HWS C_ HS. 

Having outlined the proof we turn to the details. The letters q, q '  will always 

denote finite sequences of distinct atoms, lh (q) is the length of q so that 
I - I  

q - { i t l  <=i <=lh(q)}-->A(lh(q) may be 0). 

p (q, q ') is the sequence r of length lh (q') defined as follows. For  i -<_ ] -<_ lh (q '), 

r(j) is the uniqtie i (1 <-i <=lh(q)) such that q ' ( j ) =  q( i ) ,  if such an i exists, 

r ( ] ) = 0  otherwise: Thus r = p ( q , q ' )  is a pure set (sequence of natural 

numbers) and q '  is determined by q and r up to permutations in fix (range(q)).  

For  each x let Qx = {q [ range (q) is a weak support  for  x }. In particular, Qo is 

the set of all finite sequences of distinct atoms. 

Define Nx by recursion on x as follows (where q ,q '  range over  Qo): 

Case 1. x is an atom. Nx ={(( l , i ) ,q)  I <-i <-lh(q), q( i )= x}. 

Case 2. x is a set and IVy has been defined for y E x, For  each q E Qx let 

Px.q = {(p', p(q, q'))[(p', q') @ Ny for  some y E x}. 

Let  N, = {((2, P,.~), q) I q E Qx }. 

Thus in each case Nx consists of pairs (p, q) with q ~ Q~. An easy induction 

on x shows that whenever  (p, q) E Nx, p is a pure set. The idea in case 2 is that, 

having chosen q C Qx, we collect all names (p ' ,  q ' )  for  elements of x but retain 

f rom each name only the information which is invariant under permutations in 

fix (range (q)). [Since q E Qx, x itself is invariant under these permutations.[ 

Inspection of the definition shows that Nx always contains exactly one pair 

(p, q) for  each q ~ Q~. In particular, Nx ~ Q for weakly symmetric x. 

Next  we define an operation D (the "denota t ion"  operation on names) such 

that whenever  x E HWS and t E N~ - X  = D(t). D(t) is defined (for all t)  by 

E-recurs ion  as follows. 

Case 1. t has the form ( (1 , i ) ,q ) ,  1 <-i <-lh(q). Then D ( t ) =  q(i). 

Case 2. 

Case 3. 

t has the form ((2 ,P) ,q) .  Le t  

D(t ) = {D(p', q ' ) l (P ' ,  P(q, q'))  E P}. 

None  of the above. Then D(t )= O. 
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Clearly D is a well defined operation in ZFA (in fact  it is Az~A). Remember 

that ZFA contains the primitive constant "A ", hence "Qo" can be regarded as a 

defined constant;  q and q '  range over  Qo in the definition of D. 

LEMMA 1. If x E H W S  then (Vt E N x ) D ( t ) = x .  

PROOF. Induction on x. The case of an atom is clear by inspection of the 

definitions. So let x @ H W S  be a set (so x C_ H W S )  and assume that for  all 

y ~ x ,  ( V t ' E N y ) D ( t ' ) = y .  Let t E N , .  For some q ~ Q. , ,  t has the form 

((2, Px.q),q) where Px,q is defined as above. By definition then 

D(t  ) = {D(p' ,  q')I(P', P(q, q')) ~ Px,,}. 

To show that D ( t ) =  x we have to show: 

(i) Each y @x is of the form D(p ' , q ' )  for some p ' , q '  such that 

(p ' ,p(q ,  q')) E Px., ; 

(ii) whenever  (p ' ,p (q ,q ' ) )EPx . , ,  D ( p ' , q ' ) E x .  

Proof  of (i): Let  y E H W S  so choose some q'  @ Qy and let p '  be the unique 

set such that ( p ' , q ' ) E  Ny. Then ( p ' , p ( q , q ' ) ) E  P~., be definition of Px.~ and 

D(p' ,  q') = y by induction hypothesis.  

(ii): Here a symmetry argument is needed. Assume that p ' ,  q '  are such that 

( p ' , p ( q , q ' ) ) E  Px.,. Then there exist p",q"  such that (p" ,q" )E  IVy for some 

y ~ x  and (p ' , p (q ,q ' ) )=(p" ,p (q ,q" ) ) .  Thus p '  = p "  and p ( q , q ' ) = p ( q , q " ) .  It 

follows from the definition of p(q, .  ) that there exists some rr E fix~ (range (q)) 

such that q '  = rrq". But (p ' , q" )  = ( p " , q " ) E  Ny, hence (applying 7r) 

(p ' ,  q ' )  E N,~r~ (since y ~ N~ is a defined operation of ZFA). But q E Q, so 

7rx = x, hence Try E x (as y E x). By induction hypothesis, D ( p ' , q ' ) =  rr(y), 

hence D(p' ,  q') ~ x, proving (ii). 

We have shown that D(t)  = x for any t E Nx. This completes the induction 

step and the proof. �9 

LEMMA 2. If  X E H W S  and E C_ A is finite and weakly supports x then E 

supports x. 

PROOF. Let  q enumerate  E without repetitions. Then range (q) weakly 

supports x so q ~ Qx. Let  p be a pure set such that (p, q) ~ Nx (we have seen 

that p exists, and is unique, for  q • Qx). By Lemma l, x = D(p,q) .  Thus if 

r C f i x ( E )  then 1rq = q ,  hence 

zrx = rrD(p, q) = D(rrp, zrq) = D(p, q) = x. 
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This shows that E is a (strong) support for x. �9 

LEMMA 3. H W S  C HS. 

PROOF. By Lemma 2 each y ~ H W S  is symmetric. Thus 

x ~ H W S  ~ (Vy E TC{x}) (y ~ H W S )  ~ (Vy E TC{x}) 

(y is symmetric) ~ x E HS.  �9 

The proof of 4.2 in ZFA, without AC, is thus complete and Lemma 2.1 

follows immediately from the absoluteness of the notion "hereditarily weakly 

symmetric" between standard models of ZFA. 

The proof of the main theorem (2.2), is now complete too. 

Note on terminology: The phrase "weakly symmetric" is ad hoc. In a 

systematic terminology we should have replaced "symmetr ic"  and "weakly 

symmetric" by "symmetric with respect to the group ~d (and the filter of 

subgroups J;)" and "symmetric with respect to ~ '  (and ~: ')" respectively, 
where ~d is the group of all permutations of A, ~d' the subgroup of permutations 

moving only finitely many elements (and o~, o~' are the obvious filters). See 

[4, 4.21. 

5. Transition to a model of ZF 

We wish to go from the ZFA-model ~ to a standard model of ZF with an 

infinite free c.B.a. Since ~W is a permutation (FrenkeI-Mostowski) submodel of 

0//, which is a standard countable model of ZFA + AC, the Jeck-Sochor first 

embedding theorem ([4,6.1]) is applicable. Denoting by J,t the kernel of 

0//(M = (M, ~ ) where M = U N ~ ( 0 ) ) ,  the theorem asserts the existence of a 

symmetric (Cohen) extension • = (N, ~ )  of M and a set /] E N such that 

~ ( A )  ~"~ is E-isomorphic to ~(,~)~x~. N is a standard model of ZF and it 

remains only to show that in 2r there is a free c.B.a, over ,4 (which is clearly 

infinite). 

For brevity let T = ~"(A)~r~, T = ~'(A)C~'J. As seen from the proof in 

[4,6.1] an isomorphism - of (T, E ) and (]r, E ) is defined so that the image of 

A is ,g, (i.e. - - , 4  = {4 1 a E A }) and for every set x E T, ~ = {~ [ y E x }. 

Note that if to is a B.t. of finite depth over A (,4) and to E W (to E N) then 

& E T (to E T respectively). Here we use the definitions p, = (0, i), - - tO = 

(1,tO), ^ X = ( 2 ,  X), v X = ( 3 ,  X). An easy induction on n, using the above 

properties of ~ ,  shows that for every x E T: x is a B.t. of depth =< n over A if[ 

is a B.t. of depth < n over fi~. 
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LEMMA. 1f ch, ~b E W are B.t . '  s o f  f inite depth over  A then ch -~ tO iff ~b ==- ~k. 

PROOF. With each valuation over  A ( i . e . - -Boolean-va lued  model for  the 

propositional language over {p,,(a E A }) we associate a valuation over fi, by 

letting the new value of p,~ be the old value of p,, (for all a E A). An easy 

induction on depth shows that for  any B.t. 4, E W of finite depth over  A, the 

new value of 4~ is the old value of 4, (or both are undefined, which may happen 

if the B.a. is incomplete--see  [9, w Now, if th~ ~ then there is a valuation 

over  A in which 4~,tP are defined and have different values. In the induced 

valuation over  ,4, 4~ and t~ are defined and have different values. This shows 

that th~ 0 ~ ~ ~ and the proof  of ( ~  d~ ==> th~ ~,) is similar. �9 
Combining the lemma with the facts stated before it we can argue as follows: 

Let  X E N be a B.t. of depth 5 over  ,4. X = ~ for some B.t. ~ E W of depth 5 

over  A. By 3.1 there is in W some B.t. ~ of depth -< 4 over  A such that 4' --- 4/. 

is then a B.t. of depth < 4 over  A, t~ E N and X = ~ - ~. Thus in )f  the 

following statement holds (by the absoluteness of " -=" ) :  

Every B.t. over  ,4 of depth 5 is equivalent to some B.t. over  fi, of depth _-< 4. 

Thus in X the B.t 's of depth < 4 over ,4 are closed, up to equivalence, under 

the operations - - ,  A, V and an easy induction shows that (in A f) every  B.t. over  

P, is equivalent to one of depth < 4. By 1.1 there is in ) f  a free c.B.a, over  ,4. 

The reader will easily check that in N the set ,4 has some other peculiar 

properties: It has only finite and cofinite subsets, it cannot be linearly ordered 

etc. (cf. [4, 4.6, Problems 3,7 and 6.3, Problems 3,5]). Also, by using the 

embedding theorem with to +to (choosing N~ and A,, A ~ A f , ,  so that 

~ " + ' ( A )  r is isomorphic to ~ ( A r ) ~ " ) ,  we can transfer more properties. 

For  example,  since the kernel ~ of 0}/and ~v" is a model of ZFC there is in ~ a 

non-principal ultrafilter u over  to. Since rank(u)  = to + ! and since ~t and N, 

have the same sets of rank less than to + w  (as is easy to check), u is a 

non-principal ultrafilter over  to in N,. Thus various stronger (but apparently not 

very interesting) versions of 0.2 can be proved (see also Section 7). 

6. Alternative approaches 

I. Our proof that there is a free c.B.a, over  A in 7,V, hence in 5 p, is indirect 

and uses essentially the countability of (elements of) W and the fact (2.1) that 

for  every  B.t. ~b • W there is a finite set E _C A such that zr& = ~b for every 

~r ~ fix (E)  (this is needed to show if f - F.g then f E Mod (&) r g E Mod (&)). 

It would be interesting to see a more direct proof which will give the existence a 

free c.B.a, over  A in 5e without going through countable models. A possible 
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approach is to give a more explicit description of the form of hereditarily 

symmetric B.t.'s over A, which will show that each such B.t. of depth 5 is 

equivalent to one of depth _-< 4. 

II. As long as one is looking for a ZFA model only the work of Section 4 

could be dispensed with as follows: Let ~// be as in Section 2 and let o/r be the 

least standard model of ZFA (in the sense of Section 2) containing the ordinals 

of 91. That is, W' -- L~o(A) where ao is the least ordinal not in U and La (A) is 

defined by induction on a :  Lo(A ) = A, L ,§  ) = {X  C L.(A )IX is first order 

definable in ( L ~ ( A ) , E , O , A )  from parameters in L~(A)}, L a ( A ) =  

U,<~L~(A)  for limit a. 

Here it is clear that W' C_ HS  (as fie is a standard model of ZFA containing all 

ordinals). Thus we could prove the main theorem for 74/". without relying on 

Section 4. The difficulty would move to the stage of getting a ZF-model. To 

apply the Jech-Sochor embedding theorem to ~V' we have to know that there 

exist a countable standard model 071, of ZFA + AC and (in 0//,) a group ~3 of 

permutations of A and a normal filter ~ of subgroup of ~3, such that ~ 

consists exactly of the (~3, if)  hereditarily-symmetric elements of o//,. Such a 

~ '  can be found for ~V' just defined but the work involved is not very different 

from what we did in Section 4. 

Thus at present the proof presented in Sections 2-5 is the best we have. Yet 

the author will not be surprised if a study of the more general questions 

presented in Section 7 leads to a considerably simpler proof of the result of this 

paper. 

7. Concluding remarks and problems 

The argument of Section 4 establishes a little more than was stated. It shows 

(as a theorem of ZFA) that every element of H W S  is obtained from a pure set 

and a finite sequence of atoms by the AZrA-operation D. Thus H W S  is the least 

model containing all pure sets and all atoms. 

It seems that in many cases where a Fraenkei-Mostowski model ~f is defined 

by a group ~3 and a filter of subgroups ~,9~ is actually the least model 

containing all pure sets, all atoms and some non-pure sets which were intended 

to be put in it. For special models this should be provable by arguments similar 

to that of Section 4. Is there a general theorem of this kind? A similar problem 

can be posed for symmetric (Cohen) extensions of ZFC models. 

The remaining remarks and problems concern the Gaifman-Hales theorem 

and its extensions. Consider (in ZF or ZFA) the following classes of cardinals: 
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C"= {KIK is an infinite cardinal}, 

C '  = {KJ there is no free c.B.a, over  a set of cardinality K}, 

C 2 = {K] every B.a. has a complete embedding in some c.B.a, generated by 

-< K generators}. 

In ZFA we know that No E C ' ;  Kripke's embedding theorem states that 

N o ~ C "  and is provable in ZF (see [6], [10]). In ZFA:I~,E C2 r the set A of 

atoms has a I-1 mapping into a pure set r every set has a I-1 mapping into a 

pure set. (The proof is easy.) Thus "~h E C-"' is not a theorem of ZFA but is a 

theorem of ZF and of ZFA + AC (this was noted by S. Kripke). It is obvious (in 

ZFA) that C2C_ C'C_ C" and AC implies C 2 = C'  = C~ we have seen (0.2) that 

C ' C  C ~ is consistent with ZF. Obvious questions are now to get, in ZF, more 

information about membership in C ' ,  C-" and determine whether "C-" C C'  = # 
C O'' , " C  2= C ' C C " " ,  " C : C C ' C C  ''' are all consistent with ZF and how 

" C '  = C ~ is rela~ted to other weak forms of AC. What we know now in ZFA is 

mainly that K -~ E C '  for every  infinite K. The author has recently proved in ZFA 

that ]D[ E C '  whenever  D is infinite and linearly orderable. In ZF we know 

also that K : ~  C" for every infinite cardinal K (by [9,5.7]). 

Somewhat  more is known (see [11] about whether  the set of atoms A satisfies 

]A ] ~ C '  in the ordinary FraenkeI-Mostowski models where each element has a 

finite support. If the permutation group is the group of automorphisms of some 

given first order structure ~ = (A, . . . ) ,  then ]A I E C '  in the induced Fraenkel- 

Mostowski model iff M satisfies some simple model theoretic condition (in the 

"real universe",  where A is countable). Also an analogue of the result of 

Section 4 holds. The proofs will appear elsewhere. 

One last remark: It is not clear that the mathematical content  of the work is 

best brought out in the form of (relative) consistency or independence results. 

Perhaps it is more useful to study (in ZFC or ZFA + AC) Boolean terms and 

algebras which are hereditarily symmetric over a set A in a suitable sense. 

Does the existence of a " f ree  hereditarily symmetric c.B.a." over  an infinite set 

have any mathematical applications? 
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